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SUMMARY

A theoretical investigation was made of the behavior
of a cantilever beam in rotational motion about a transverse
eéxis through the rcot when the rotation of the root 1s
suddenly stooped. Equations are gilven for determlning
the stresses, the deflections, and the accelerstions
that occur in the beam as a result of the arrest of motion.

The equetions for bending and shear stress reveal
that, at a glven percentage of the distance from root
to tip and at a given tip velocity, the bending stresses
for a particular mode are independent of the length of
the beam and the shear stresses vary inversely with the
length. When examined with respect to a glven angular
veloclty instead of a glven tip velocity, the equations
reveal that the bending stress 1s proportional to the
length of the beam; whereas the shear stress is independent
of the length.

Sufficlent experimental verification of the theory

has previously been given 1in connection with another
problem of the same type.

INTRODUCTION

Stresses occur in the structure of an alrplane as a
result of the shooks experienced in lending. These
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shocks involve a rather #dudden change in the motion of
the airplane or its component parts,

In reference 1 a theoretlical and experimental
Investigation was made of the behavior of a cantilever
beam in transverse translational motion when the root
of the beam was suddenly brought to rest. Equatlons
wore given for determining the stresses, the deflections,
and the accelerations that existed throughout the beam
as a result of the impact. Experimental verificatlion
was presented for the theoretical equations.

Shocks involving changes in rotational motion, as
well as shocks involving changes in translational motion,
may be experlenced by the alrplane. The fundamental
theory of reference 1 has therefors bsen applied herein
to an arrested cantllever beamj; the only change 1s that
the inltial motion arrested 1s rotation about a trans-
verse axis through the root.

As in reference 1, the present paper is based on
the usual englneering beam theory., In thls theory, the
deflections are considered to be the result of bending
alone and shear deflectlons are neglected. The theory,
as applied to ordinary beams, gives reasonably good
results as long as the distance between inflectlon
points is greater than a few times the depth of the beam.
When thls theory for beam action l1s used in vibration
problems, such as that 1n the present paper, the results
are satlsfactory for those modes of vibration for which
the nodes are not too close together. Because the
theory of the present paper 1s baslcally the same as
that of reference 1, the experimental verification
given in reference 1 may reasonably be expected to
apply to the present equations, Additlonal experimental
check was therefore considersd unnecessary.

SYMBOLS
E modulus of elastliclty
Y welght ‘density of material
A coefficient of equivalent viscous damping of

material
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wix,t)

wn(x,t)

velocity of sound in material(\/j-si,r )

acceleration of gravity
length of beam

moment of 1lnertla of cross section of beam
about neutral axis

cross-sectional area of beam
radlus of gyratlion of cross sectlon of

beam(}/ ‘)
coordlinate along beam measured from root
distance from neutral axis of beam to any fiber
time, zero at immact

o)

operator g%

integers 1, 2, 3, etc., designating a particular
mode of vibration (used as subscript)

nth vositive root of 1 + cos O cosh 8 = 0

undamned natural angular frgqgency of nth mode,
radlans per second pc e
L
darped natural angular equency of nth mode,

)
radlans per second (?n‘ll - —ZEE— ’

2

A2
<§hen —Egg— > 1, the "frequency" 1s defined

A=W,
by W' = wp —-2—-1->

angular veloclty of beam prior to impact
deflection of beam at station x and time ¢

deflection of beam at station x and time ¢
for nth mode of vibratlion
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a(x,t) acceleration of beam at station x and time ¢

an(x,t) acceleratlon of beam at station x and time ¢
for nth mode of vibratlon

o(x,y,t) bending stress in beam at station x, dlstance
from neutral axis y, and time ¢

on(x,y,t) bending stress in beam at station x, distance
from neutral axis y, and time +t for nth
mode of vibration

T(x,t) average shear stress over cross sectlion of beam
at station x and time 't

?h(x,t) average shear stress over cross section of beam
at statilon x and time t for nth mode of

vibration
An bending-stress coefflclent
B, shear-stress coefflclent
C -deflection coefficlient

RESULTS AND CONCLUSIONS
Theoretical Results

When a cantlilever beam rotating with uniform
angular velocity (2 about the root 1s suddenly stopped
at the root, theoretically an infinlte number of modes
of vibtration are exclted. With each successlive mode,
damping has an 1lncreasing influence upon the frequencies
and amplitudes of vibration and, for sufficlently high
modes, damping even changes the type of motion from
osclllatory to nonoscillatory. In the lower modes,
however, damping has little effect and only terms of the
first order in damping need to be included 1n the
equations. Only the equations applicable to the lower
modes, which alone are of lmportance in any practlcal
case, are presented 1n thls sectlon. A more complets
treatment of damplng 1s given in the appendix.
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The angular frequsncies (2w times the frequency in
cps) are glven by the equation .-

9 2
n

where 0, has the following values for successive modes
of vibration:

8, = 1.875104 85 = 114.157168

8, = L.694098 8¢ = 17.278759

63 = 7.85L757 8, = %(2n-1)ﬂ,r1>6
8), = 10.995541

Tnese values of 60,, which are the same as those glven
In reference 1, are characteristlec of a cantllever beam.

The energy that the beam possesses before the motion
of the root 1s halted 1s consumed in exclting the various
modes of vibration and is distributed among the modes as
follows:

Mode, n Percentage of energy
1 97.07
2 2.7
51
.08
5 to ® .07

Thls distributlon of energy among the various medes of
vibration 1s presented graphlically in figure 1.

Expressions for the bendlng stresses, shear stresses,
deflections, and accelerations are of the same form as
the expressions glven in reference 1 for these quantitles
except that the veloclty of translation v 1s replaced
by the tip velocity QL and the coefficlents 4p, B,,
and Cp have new values. For the nth mode of vibration
these expressions are as follows:
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For stresses and deflections,

’ant

op(x,y,t) = 8, 2L : IEe 2E  sin ot (2)
. mnat

Ta0x,t) = By WBre TF " oan (3)
Ao at

w,(x,t) = ¢y :? %?e 2E sin w t (L)

For acceleratlons, when damping is sufficlently small,

an(x,5) = ~w 2w, (x,t) (5)

The varlations of the dimenslonless coefficlents An,

Bn, and Cp with position along the beam x/L are

iven for the first three modes (n =1, 2, and 3) in
igures 2 to L. The highest absolute values of A

and B,, and hence the highest stresses, occur at the

root of the beam., These valuses, for the filrst three
modes, are

Mode, n A, at root B, &t root

% 1 lg g Z gg

3

The foregoing values of 4, and B, at the root are
presented graphically in flgure 5.

When the effects of damping are neglected, the
maximum values with respect to time of o (x,y,t) and

n(x t) assoclated with the nth mode of vibration are

o_(x,¥) = Ap & §E (6)
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Equations (2) to (5) for stresses, deflectlons,
and accelerations give the values assoclated with the
nth mode of vibration. Since all modes of vibratlion
occur simultaneously, the net results are the super-
position of the effects of all modes. Thls super-
position gives the following equations; For bending
stress,

2 2
QI. _xml t -Xi)-a-t
o(x,y,t) =—°-%E Aje 2E sin Wyt + Aje ZE ein upt + .../ (B)

Wor averags shear stress,

2 y 2
Aw, huz
: 0L o olp o 2m S
T(x,t) = TI-.'E Bye sin Wyt + Boe sin'ﬁozt + e (3)
Tor deflection,
2 AW 2
2
QL1 (. "2m Cein "o
w( x, t) - ry Cye sin w1t + Cpe sin Wyt + ... (10)

Tor acceleratlion, when dampling is sufflciently smsall,

2 2
Ay M)a
qr 1.2 ———t -——t

s L) m—ma 2 2B 2 2B
a(x, t) s €18 e sinW & + C 0% sin Wyt + .../ (11)

The equatlions for bendlng stress reveal that, at
a gilven percentage of the distance from root to tlp
and at a given tip veloclity, the bending stress for a
particular mode is independent of the length of the beam.
The equations for shear stress reveal that, for a glven
tip veloclty, the shear stresses at any statlon vary
inversely with the length of the beam, When examined
with reaspect to a given angular velocity lnatead of a
gilven tlp veloclty, the equations for bending and shear
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stresses reveal that the bending stress 1s proportional
to the length of the beam; whereas the shear stress 1s
independent of the length of the beam,

Influence of Type of Shock

The frequencies and deflected shapes of the modes
of vibration are characterlistic of the cantllever and
not of the 1nitial shock. The type of shock, however,
determines the relatlive amplitudes of the various modes,
The amplitude of each mode, in turn, determines the
energy and stresses developed by that mode. In fig-
ure 6, arrested translation (reference 1) and arrested
rotation (present paper) are compared on the basis of
the distributlion of deflections, energies, and stresses
among the first three modes. In the case of arrested
tranalation, about 61 percent of the total energy is
in the first mode; the flrst mode predominates as
regards tip deflection and root bending stress, while
the largest shear stress occurs 1ln the second mode. In
the case of arrested rotatlion, about 97 percent of the
total energy 1s in the first mode, and the first mode
predominates not only with respect to tip deflection
and root bending stress but also with respect to
maximum shear stress.

If the motion that 1s arrested is a combinatlion
of translation and rotation about the root, the deflec-
tions and stresses can be found by superposing the
results for the translation and the rotatlon separately.
If the cantilever 1s not perpendicular to the dilrection
of root translation at the moment of impact, the
translational velocity used should be the component of the
root veloclty perpendicular to the cantllever at the
moment of impact. The component of root wveloclty parallel
to the cantllever causes longltudinal vibratlions but
such vibrations are not considered herein.

The equations given I1n thls report and in refer-
ence 1 apply also to the cases 1n which the root of
a cantllever beam at rest 1s suddenly glven a constant
angular velcclty or a constant linear veloclty in a
directlion perpendicular to the length of the beam.

Langley Memorlal Aeronasutical Laboratory
National Advisory Commlittee for Aeronautics
Langley Fleld, Va.
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APPENDIX
THEORETTCAL DERTIVAWION ===« =+ -

General analysis.- Conslder a beam of uniform cross
section In equllibrium. If a portlion of the beam 1s
suddenly dlsturbed, as by a shock, the beam 1s set into
damped bending oscillations. The equation of motlon
for these bending oscillations 1s gliven by the dif-
ferentlal equation (reference 1)

w
Ep? T 6% +np2 2 62‘2' 0 (A1)
dxlt 3 ot & of
2 _ 8E
By using ¢~ = =, equation (Al) can be written
Y
abw A 3w 1 3%
—_— = + =0 (A2)
st woaxd ot p2c2 012

This partial differentlial equation 1s reduced to an
ordlnary differentlal equatlion of the fourth order by

o
wrlting p = 3—; thus

(“Ma) S

The general solution of equation (A3) 1s

1l
o

(A3)

=Pcosh9%+Qsinh9%+Rcose%+ssine% (al)

where

1
6 = S
1 + v~
Pey °E
The coefficlents P, Q, R, and S are to be determined
from the boundary conditlons. The case under conslderation
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i1s that of a cantllever beam rotating about its root
with constant angular velooity Q and having the
rotation suddenly stopped by clamping of the root in
vosition as the beam coincides with the x-axis. The
boundary conditions for this case are

4

3 .fm) =p(2®) =a-a
ot 6Ix=0 bxx=o

(W) =(.6_21 =<_b_3_! =0
=0 ox2 x=L ax> %=L

The angular velocity of the root as given by the
boundary condition Q - Q7 (discontinuous function) is
represented graphically in figure 7. By the procedure
adopted in reference 1, the solution will be obtained
for the boundary condition

-3 (_61) = 07
ot \ox x=0

and the constant angular wvelocity £ will be added to
the resulting sngular wveloclty.

With the application of the boundary condlitions to
equation (4ly), the operational solution for the angular
velocity induced by -QJ7 1is found to be

n.___-0f X .
P(gx 2(1 + cosh 8 cos 6) [(1 + 008 8 cosh 6) cosh85 + °°sei')

+ gin O sinh O (oos 6%— - gosh e%)

+ (cosh © 8in 0 ~ ginh O cos 0) sinhe:-:-+ sinef-)]




—— e v ——

Interoretation of this operational expression by use of the Heavislde expansion
theorem and addition of the constant angular velocity 2 gives for the total

angular veloclty

Mona
2 o e T
d (? 2{: ( x) 2E — R
—)=Q-0Q7 +0Q Fife. =)e cos W't - sin wn't |Z €A5)
ot &D e nL n n
where
1 nth positive root of 1 + cos & cosh 8 = O (all roots -
namely, 9, and %18, - have been considered in the
2 interpre ta%i on) :
e .
Wp = po —r-lé- undamped natural angular frequency of ath mode,
L radians/sec

Aw
Wn! = Wy [l - 2 damped natural angular frequency of nth mode,
&2 radlans/sec

sin 6p sinh On(cos Gnix- - ocosh Bn%) + (oosh 6, sin 8, - sinh 6, cos Bn) (sinhen% + ®in Gn%)

lﬂ(é %)-2
oy, 8n (oosh 8, sin By - aiph B, ocos Bn)

Integration of equation (A5) with respect to x gilves for veloclity

G2EGT ‘UK HUY VOUR

T



2
- Mo Mon
%E = (Q - Q)x + QL § F(en% o 2 [cos wyrt - —==E sin wy't)7  (46)
n=

Kwn

1 -
2
where h'E

( . sin 6, sinh en(sin Onf- - sinh GHE') + (cosh 8, sin 6, - ainh 6, cos eg Gosh Gn% - cos en%
e —) =2
nr,

enz(oosh 8, sin 0, - sinh 8, cos Bn)

Integration of equation (A6) with respect to time with the condition (")t=0 =0
glves for the deflsction (when t 2 0)

Aw._ 2
Tﬂ F enJ]E..) -t
w(x,t)=QL£__ 2E sin wn'ti

n=1 wn'

2 — - t
- I -I—;)-zcn —_—t——e¢ 2E  gin wy't Z (A7)
n=1

c

where x
"fon T

G2EGT *ci YV VOVN
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The contribution of the nth mode to the deflection

is - -
Ao 2
2 _—
w,(x,t) = QL L- Cn - e °E “ginw,rtd (a8)
c p 1 - Acwn
hEE
Aoy,
When ~—— > 1, equation (AB8) may be put in the form
2E
: 2
QL 12 1 ey
= 8L L~ 2E '
wn(x,t) = = > Cn s e sinh w,'tZ (A9)
-1
hEz
where now
w | —

The form indicated by equation (A8), in which EE_<]"

1s characteristic of the lower modes and represents
damped osclllatory motionx The form 1ndlicated by
w

equation (A9), in which ?ﬁ§;>]' (damping greater than
critical), is characteristic of the higher modes and
repregents subsidence motlion,

The complete behavior of the cantilever may be
determined from equations (A6) for velocity and (AT)
for deflection. The quantitles of lnterest are the
bending stress, the shear stress, and to some extent
the accelerations. When damping is present, the
equations representing the contribution of the nth
mode to these quantltles may be given in the two forms
indicated by equations (A8) and (A9). In subsequent
equations, however, only the form indicated by (A8) 1is
given, because thls form 1s characteristic of the modes
that are of practical lmportance,




Bending stresses.- The bending stresses o(x,y,t) at any fiber located a
distance §y Irom the neutral axis are

52w nL :E - ¢
o(x,v,t) = Ey';—— =g =3 Ay 2 e
where \’ hE

(oosh 8, sin 8 - sinh 8, cos en)(coshe —~ + gos b L) - 8in 8, sinh enémen%+ aian%)

An =2

enaéosh 8, sin O, « sinh 8, cos en)

The contribution to bending stress of the nth mode 1s

Onh(x,y,t) = E

Average shear stresses.- The average shear stress on the cross section is

kwnz
- - t
T(x,t) Epa L =E = QL B Bn 1 e 2E 8in wn'ti
bx 1 Xthz
T T2
LE

GZAGT *oN BYY VOv%



where .

. X 3 x x =\’
Gosh 6, sin'0, - sinh 6, ocos 99 éi_nh Bni- - s;nanl-: - sin O, sinh enéoah °nf-* oos e“Ij.)
Bp =2-

ené’“h 8, sin 6y - sinh B, ocos 3n)

The contributlion to shear stress of tlws nth mode is

Mg?

e 2E sin wn'ti

GeHAGT "o ¥4V VOTH

Tn(x’t) = | ¥= QI‘ e Bn

E. ]
n

1 -
LE?

Accelerations.- From equation (ab), with the ald of the relation
pF{t)I = F(0)pd + F1(t)2

the acceleration anywhere on the beam is found to be

bzw ’. X x
a(x,t) = 61:2 Sn=_ F(nL) - I QLp 1

2
oaf N, ) '
@ 1l Aw
ar 12 22/ "5t —5
- — = C 2E sin w, 't + cos w, 't 1
c P&y m ; M2
n= )\an 1 - n

1=
[\V)
a1



With the ald of the orthogonal properties of the functlon F(en%), 1t 1s possible

to show that
<t Y- X -
> F BnL T 0
n=1
The llnear acceleratlons are therefore always finite.

The contributlon to acceleration of the nth mode 1is

Mo, !
2 E
an(x,t) =-Q—§'- %— wn‘?'cn sin w 't + 5. 2 cos w 't |2
n
-
2E

Comparison with the expression for wp(x,t) from equation (A8) shows that the

acceleration for each mode 1s out of phase with the deflection. When damping
1s suffilcisntly small, however, the relation between the acceleration and the
deflection reduces to the well-known result for undamped vibration

an(x’t) = "'“)nz wn(x,t)

ot
o~

GFECTL oM YUYV VOVA
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